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A B S T R A C T   

Objective: We propose FedScore, a privacy-preserving federated learning framework for scoring system genera
tion across multiple sites to facilitate cross-institutional collaborations. 
Materials and methods: The FedScore framework includes five modules: federated variable ranking, federated 
variable transformation, federated score derivation, federated model selection and federated model evaluation. 
To illustrate usage and assess FedScore’s performance, we built a hypothetical global scoring system for mortality 
prediction within 30 days after a visit to an emergency department using 10 simulated sites divided from a 
tertiary hospital in Singapore. We employed a pre-existing score generator to construct 10 local scoring systems 
independently at each site and we also developed a scoring system using centralized data for comparison. 
Results: We compared the acquired FedScore model’s performance with that of other scoring models using the 
receiver operating characteristic (ROC) analysis. The FedScore model achieved an average area under the curve 
(AUC) value of 0.763 across all sites, with a standard deviation (SD) of 0.020. We also calculated the average 
AUC values and SDs for each local model, and the FedScore model showed promising accuracy and stability with 
a high average AUC value which was closest to the one of the pooled model and SD which was lower than that of 
most local models. 
Conclusion: This study demonstrates that FedScore is a privacy-preserving scoring system generator with 
potentially good generalizability.   

1. Introduction 

Cross-institutional collaboration has gained popularity in recent 
years as a way to accelerate medical research and facilitate quality 
improvement [1]. Widespread digitization efforts in the healthcare in
dustry enable the use of data-driven evidence for clinical prediction 
models [2], which can be ideally built using centralized data pooled 
from as many sources as possible. Some examples of cross-regional 
collaborations include: the Collaborative European NeuroTrauma 
Effectiveness Research in Traumatic Brain Injury [3], the Genotype to 

Phenotype Databases [4], the Big Data in Cardiovascular Disease [5], 
the Ontario Prehospital Advanced Life Support [6], the Kaiser Perma
nente Research Bank [7] and the Pan-Asian Resuscitation Outcomes 
Study [8]. However, such partnerships require data sharing, which is 
typically laborious and time-consuming, and sometimes even impossible 
due to various privacy regulations [9,10], for example, the European 
Union General Data Protection Regulation [11]. 

Federated learning (FL), sometimes referred to as distributed 
learning or distributed algorithms, can avoid data sharing by collec
tively training algorithms without exchanging patient-level data [12], 
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safeguarding patients’ privacy by distributing the model training to the 
data-owners and aggregating their results [13]. In addition to disman
tling data silos, FL could also speed up the development of much-needed 
AI models [14]. For instance, during the COVID-19 pandemic, Dayan 
et al. [14] constructed a clinical outcomes prediction model across 20 
institutes using FL. Luo et al. [15] studied the demographic and clinical 
factors that are associated with length of stay in COVID-19 patients 
using a lossless, one-shot FL algorithm [15]. Vaid et al. [16] also applied 
FL to predict mortality in hospitalized patients with COVID-19 within 7 
days. There exist many applications of FL for medical image data, most 
of which use black box models from computer vision. Interpretable 
models, on the contrary, have fewer instances of FL applications despite 
their popularity in clinical research. 

As a type of interpretable risk scoring model [17], scoring systems 
have been employed in practically every diagnostic area of medicine 
[18] since they offer quick and simple risk assessments of numerous 
serious medical conditions without the use of a computer [17]. Some 
traditional scoring systems, such as the Glasgow Coma Scale [19] first 
described in 1974, rely heavily on clinician’s domain expertise. More 
data-driven methods for building scoring systems have emerged in 
recent years, including the Supersparse Linear Integer Model [20], 
which can better deal with sparsity; approximal methods that are more 
computationally efficient [21,22]; and interfaces that enable flexible 
engagement of domain expertise, like the Interval Coded Scoring [23] 
and the AutoScore [24]. 

Regardless of development strategies, scoring systems have usually 
been created using single-source data, limiting application at other sites 
if the development data has insufficient sample size or is not represen
tative. Although it is possible to develop scoring systems on pooled data 
[25], the process of doing such pooling, as noted previously, is time 
consuming and difficult to achieve due to privacy restrictions. As a 
result, frameworks for building scoring systems in a federated manner 
are needed to overcome such difficulties. To fill this gap, we propose 
FedScore, a first-of-its-kind framework for building federated scoring 
systems across multiple sites and demonstrated its efficacy and potential 
generalizability with a proof-of-concept experiment using real-world 
data. 

2. Methods 

Scoring systems are linear classification models that require users to 
add, subtract and multiply a few numbers in order to make a prediction 
[17] and have been widely utilized in the field of clinical decision- 
making [26–28] for risk stratification due to their interpretability and 
transparency. They can also assist in correcting physicians’ mis
estimations of the probability of medical outcomes, which may be rather 
common [29]. Users frequently take into account a model’s degree of 
parsimony when implementing clinical models [30], which means that a 
model is parsimonious if it is both sparse (i.e., it uses the least amount of 
variables possible) and has good prediction accuracy [30]. As an 
example, the AutoScore framework [24] is a computational tool to 
conveniently create such scores using machine learning methods, and 
has been well received by clinicians [31,32], because it integrates 
domain knowledge with data driven evidence. However, regardless of 
the particulars of their generation of scoring systems and accounting for 
model interpretability, AutoScore and other similar methods only 
permit the development of scoring systems using one set of pooled data. 
To fully exploit the growing data sources and to create less biased 
models, we propose our FedScore framework to achieve good parsimony 
and interpretability for federated data, while complying with potential 
privacy restrictions. 

2.1. FedScore framework 

The FedScore framework consists of five modules: 1) federated var
iable ranking; 2) federated variable transformation; 3) federated score 

derivation; 4) federated model selection and 5) federated model evalu
ation. The workflow of FedScore is illustrated in Fig. 1.  

(1) federated variable ranking 

Variable selection is an essential step in the development of scoring 
systems for parsimony. In FedScore, to construct a global model across 
multiple sites, it is necessary to pre-identify a set of unified candidate 
variables. Before ranking the variables, it is recommended to check for 
multicollinearity among the candidate variables and remove variables 
when needed in order to obtain more reliable feature importance. We 
employed random forests for variable importance measurement, which 
is a well-established approach [33–37]. The variable ranking is first 
performed independently via random forests at each local site, and then 
a global variable ranking is created by rearranging variables by their 
weighted ranks across all K sites. Specifically, for a single variable Xm 
where 1 ≤ m ≤ P and P is the total number of predictors, qj ∈ N denotes 
its rank at site j, and its global ranking is obtained by mapping all values 
of 

∑K
j=1wjqj for each site to the integer set [1,P]⊂Z. Here, wj is the 

normalized weight for site j that satisfies 
∑K

j=1wj = 1. The definition and 
following details remain the same in the manuscript for all weights 
introduced. The default setting for the weight is 1/K, indicating equal 
weights for all sites. In addition to the default setting, a sample size- 
based weight can also be applied, where wj = Sj/S0 and Sj is the sam
ple size of site j, while S0 is the total sample size. Users may also define 
their own weights to accommodate specific research considerations.  

(2) Federated variable transformation 

The creation of categorical variables allows for the modeling of 
nonlinear effects [17,24], which has been widely applied [38–44] in the 
development of clinical scoring systems. Following this common prac
tice, FedScore turns continuous variables into categorical variables after 
unified variable ranking is established. The maximum number of cate
gories for such transformation is pre-determined (for example, choose 5 
as a usual practice), and if the maximum is surpassed, categories are 
combined so that the requirement is met. In our study, the quantiles of 
continuous variables are set at 0%,k1%,k2%,k3%,k4%, and 100%, where 
the default value of k1, k2, k3, k4 are 5, 20, 80 and 95, respectively. The 
unified cutoff for each continuous variable is calculated by weighting 
the k values acquired at each site using the same weight definition as 
previously described for global ranking, such that the weight for each 
site satisfies 

∑K
j=1wj = 1.  

(3) Federated score derivation 

Binary outcomes are common in clinical decision making and logistic 
regression is a prominent method used for modelling such outcomes. 
Federated regression models can be realized through a variety of exist
ing FL frameworks, including both traditional engineering-based and 
model-agnostic frameworks like FedAvg [45] that requires multiple it
erations, and statistics-based model-specific one-shot techniques 
[46–51] that necessitate only one round of communication. For 
demonstration purposes, we have employed a one-shot privacy preser
ving distributed algorithm called ODAL2 [46] to perform federated lo
gistic regression, which is communication-efficient and has been 
demonstrated to have low bias and high statistical efficiency [46]. This 
algorithm utilizes information from the lead local site (data are acces
sible) with the first-order and second-order gradients of the likelihood 
function from remotes sites (data are not accessible) to construct an 
approximation of the global likelihood function. The global logistic 
regression coefficients can then be obtained by optimizing the approx
imate global likelihood function. Let x1, x2,⋯xp− 1 denote the p − 1 pre
dictors, y denote a binary outcome, and the logistic regression model can 
be expressed as 
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logit(Pr(y = 1|x) ) = xT β  

where x =
(
1, x1, x2,⋯xp− 1

)T, β is the vector of intercept and slope 
coefficients, and logit(t) = log{t/(1 − t) }. Suppose a total of N =

∑K
j=1nj 

identically and independently distributed (i.i.d.) observations are 
distributed at K sites, then the log-likelihood function (LLR) of the global 
logistic regression by pooling data from all sites is 

L(β) =
1
N
∑K

j=1

∑nj

i=1

[
YijxT

ij β − log
{

1 + exp
(

xT
ij β
)} ]

The pooled estimator β̂ can be obtained by optimizing L(β). When 
data cannot be shared and the pooled likelihood function is not possible, 
approximation of the likelihood function is still achievable. The ODAL2 
algorithm applies the idea of Taylor expansion, proposing to use first 
and second order gradient of LLR to perform the approximation [46]: 

L
∼2
(β) = L1(β) + {∇L(β) − ∇L1(β) }T β+

1
2
(β − β)T{

∇2L(β) − ∇2 L1(β)
}
(β − β)

Here β is an initial value obtained from the regression model per
formed at the local site and stored for broadcasting to remote sites. 

Lj(β) = 1
nj

∑nj
i=1

[
YijxT

ij β − log
{

1 + exp
(

xT
ij β
)} ]

is the LLR of the j-th site 

(j = 1 is assumed to be the local site). ∇L(β) =
∑K

j=1nj∇Lj(β)/N is the 
first gradient of log-likelihood functionL(β) evaluated at initial value 

β.∇Lj(β) = 1
nj

∑nj
i=1

{
Yij − pij(β)

}
xij, a p-dimensional vector, is the first 

gradient of LLR of site j, where pij(β) =
{

1 + exp
(
− xT

ij β
)}− 1 

and 

∇2Lj(β) = 1
nj

∑nj
i=1pij(β)

{
1 − pij(β)

}
xijxT

ij , a p × p matrix, is the second 

gradient of LLR of site j. Both gradients are computed at each remote site 
and transferred back to the local site. 

Finally, the global beta estimator of β is obtained by optimizing the 
surrogate likelihood function. This process for constructing the global 

model is one-shot [46] as illustrated in Fig. 1, and neither of the shared 
files contain any patient level information, which guarantees privacy. 
Federated scores are obtained by having coefficients in the global lo
gistic regression model rounded to integers and mapped to interval 
[0, Smax], where Smax is the maximum score pre-decided by users, e.g., 
100.  

(4) Federated model selection 

Model selection is performed using parsimony plots generated on 
validation data, with variables added incrementally based on the vari
able ranking for the x-axis and AUC values for the y-axis. A general 
model selection criteria could be defined by maximizing Ψm =
∑

wjϕj(p1, p2, p3,⋯pm), where wj is the weight for site j as previously 
described for global ranking, ϕj measures a score’s performance on the 
jth validation set (e.g. AUC value) and m is a pre-specified number of 
total variables to include, which should be uniform across all sites. 
Different constraints can be added for the optimization task. For 
example, the total number of variables m may not exceed an integer 
number D. The set of variables {p1, p2,⋯pm} may also be set to satisfy 
certain subjective standard required by users. For instance, users may 
decide (based on domain knowledge) that a set of variables {x1,x2,..xq}, 
where q ≤ m must be included in the final scoring system regardless of 
the results provided by variable important analysis. Moreover, Ψ may be 
maximized using a number of d of variables that is smaller than m, as 
long as increasing the number of variables from d to m has little impact 
on the change in Ψ: |Ψm − Ψd| ≤ ∊, where the size of ∊ may be decided 
intuitively by users based on parsimony plots. 

After final variables are confirmed based on the selected model, a 
new model is refitted via module 2) so that the final model is as parsi
mony as possible.  

(5) Federated model evaluation 

The performance of the final model is validated on each site engaged 

Fig. 1. Flowchart of the FedScore framework.  
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in the FedScore framework. Following the Ψm defined in step 4), the 
overall weighted performance of a federated score is M1 =
∑

wjμj(p1, p2, p3,⋯pm), where μj is the score’s performance on j th 
testing set and wj is the same weight as previously defined; and M2 =
(
∑

wj

(
M1 − μj

)2
)1/2 

is a measurement of weighted performance 

variation across sites. A higher M1 value and lower M2 value indicate a 
score’s better performance and generalizability. 

The FedScore framework has been implemented in R 4.0.3 and code 
is available at https://github.com/nliulab/FedScore. 

2.2. Experiment 

The initial study cohort was formed by selecting emergency 
department (ED) visits in 2016 and 2017, using the EHR data of 
Singapore General Hospital (SGH) extracted from the SingHealth Elec
tronic Health Intelligence System. A waiver of consent was granted for 
EHR data collection and retrospective analysis, and the study has been 
approved by the Singapore Health Services’ Centralized Institutional 
Review Board, with all data deidentified. After excluding patients under 
the age of 18 and those with missing values, the remaining cohort was 
randomly divided into 10 sites for demonstration purpose, in the pro
portion of 4%, 5%, 7%, 9%, 10%, 11%, 12%, 13%, 14%, and 15% 
respectively. Fig. 2 depicts the process of cohort formation. 

The outcome in this study was whether a patient died within 30 days 
after ED admissions. Candidate variables were determined based on a 
recent work [31], the study cohort for which was also obtained from 
SGH ED data. The candidate predictors include a total of 29 variables in 
5 categories: (1) demographics information: age, sex and race; (2) PACS 
[52] triage categories (P1, P2, P3 and P4), shift time (8 AM to 4 PM, 4 
PM to midnight, Midnight to 8 AM), and day of week (Friday, Monday, 

Weekend, Midweek); (3) vital signs: pulse (beats/min), respiration 
(times/min), peripheral capillary oxygen saturation (SpO2; %), diastolic 
blood pressure (mm Hg), and systolic blood pressure (mm Hg); (4) 
comorbidities: myocardial infarction, congestive heart failure, periph
eral vascular disease, stroke, dementia, chronic pulmonary disease, 
rheumatoid disease, peptic ulcer disease, diabetes, hemiplegia or para
plegia, kidney disease, and liver disease; (5) previous health care usage: 
ED visits in the past year, surgical procedures in the past year, ICU ad
missions in the past year, and high-dependency admissions in the past 
year. 

We first used the variance inflation factor to detect variable corre
lation and found weak multicollinearity in the data. We then employed 
AutoScore to create baseline models for local and pooled comparisons 
with our FedScore framework. Three groups of analysis were performed: 
1) 10 local scores trained independently on each site with AutoScore; 2) 
one federated score trained using all sites without data sharing with 
FedScore; 3) one pooled score generated using centralized data with 
AutoScore, which is the ideal case but usually impossible in most real 
world settings. All models were chosen based on corresponding parsi
mony plots, with a predefined criterion that the maximum number of 
variables in a model should not exceed 8 and adding more variables until 
there was no significant improvement in AUC. In order to perform 
straightforward comparisons, the cutoffs and weights used during 
scoring system development were default options specified in Section 
2.1 and all processes involved were data-driven without refining, which 
engaged expert knowledge from clinical practice. 

3. Results 

A total of 80,613 individual ED admission episodes were randomly 
divided into 10 sites, with sample size ranging from 3224 to 12,092 and 
the training, validation and testing sets of each site were obtained by 

Fig. 2. Flowchart of the study cohorts’ formation. SGH: Singapore General Hospital.  

S. Li et al.                                                                                                                                                                                                                                        

https://github.com/nliulab/FedScore


Journal of Biomedical Informatics 146 (2023) 104485

5

randomly splitting at ratios of 70%, 10%, and 20% respectively, as 
shown in Fig. 2. A comprehensive summary of the baseline character
istics of the overall cohort and each participating site can be found in 
eTable 1. 

We compared the performance of the federated score developed by 
FedScore with the pooled score developed using all data and the 10 local 
scores independently developed at each site by AutoScore. Fig. 3 depicts 
how each score performed on the testing datasets of each site, with 
twelve subplots. 

For each subplot, a scoring model’s performance on each of the ten 
sites is presented in horizontal lines using the corresponding AUC values 
and its 95% confidence intervals (CIs). The vertical edges of the grey 
rectangular frame in each subplot reflect the mean of ten AUC values 
plus/minus their standard deviation (SD) and as a result, the width of 
each grey rectangular frame represents the degree of performance 
variation of a model across all sites. The detailed AUC values, CIs and 
SDs are reported in Supplementary eTable 2. The ROC curves of each 
model on each site’s testing data is provided in eFigure 1 of the Sup
plementary Materials. The scoring tables for each model and corre
sponding parsimony plots were also provided in eTable 3 and eFigure 1 
of the Supplementary Materials. 

With the information presented in Fig. 3 and eTable 2, we summarize 

the following main observations: 1) the federated score achieved good 
performance, with an average AUC value across all sites of 0.763, better 
than that of the local models and close to the one of the pooled model; 2) 
the AUC variance of federated score is among the smallest ones, and 
although the SDs for local models of site 2 and 5 appear to be slightly 
smaller, their averaged AUC values are lower; 3) the performance of the 
federated score on some sites are better than the model developed 
locally at that site (e.g. 0.7804 > 0.7300 at site 7). 

4. Discussion 

FedScore is among the first frameworks that aims to generalize 
unified scores across multiple sites while preserving privacy. The scal
able and adaptable architecture offers potential solutions for improving 
model generalizability and stability across isolated clinical datasets. 

Whereas scoring systems have been widely utilized in clinical do
mains, few existing FL applications have focused on them despite their 
prevalence, reflecting the phenomenon that existing biomedical FL ap
plications have a tendency to favor black box models [53] over more 
interpretable ML models. To meet physicians’ expectations for model 
simplicity and transparency, FL applications of interpretable models 
require more customization and modification compared to black box 

Fig. 3. Comparison of FedScore performance with baselines using AUC and 95% CI of the FedScore model and other models applied to each of the 10 sites.  
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model implementations with well-established FL frameworks available 
from the computer science community. A simple and straightforward 
scoring table with a lower AUC value for risk stratification, for example, 
would be preferred by clinicians over a black box model with a higher 
AUC value in the ED. As a result, more cautious designs for FL appli
cations of interpretable models are required and FedScore deals with 
this issue by emphasizing model parsimony and enabling flexible pro
cess monitoring for users. Future FL applications in clinical sciences 
should take similar factors into account if the research questions favor 
transparent solutions rather than merely being concerned with model 
performance. 

FL studies in the biomedical field differ from the ones in computer 
science, albeit sharing similar origins. In many standard engineering FL 
contexts, since a single client cannot create models independently, 
attention has been paid to technical details such as data partitioning 
schemes and various privacy mechanisms [54]. In clinical domains 
however, data are frequently formed at the hospital or institution level, 
making local models feasible in these cases. Under these circumstances, 
generalizability (models’ ability to generalize their performance to a 
new setting [55]) and stability of global models relative to local models 
become more crucial, but these factors are not sufficiently considered in 
many existing FL frameworks that are being developed. The results in 
section 3 show that by a co-training process via FL, a global model 
prediction framework such as FedScore can achieve less variation than 
locally developed ones while still maintaining good performance. This 
benefit of FL is promising for medical research that seeks dependable 
high risk decision making. 

Data constraints, such as biased data and small datasets are consid
ered a source of ML misuse [56], yet investigating such misconduct is 
not as feasible as developing models. Despite the emphasis [55] on 
external validations, less than 10% of clinical prediction studies re
ported to have done so [57]. Instead of training a model on single site 
and subsequently testing and modifying it on other sites, constructing a 
model with sufficient and representative data through privacy- 
preserving means may be a more viable solution. FedScore and its 
future extensions could potentially aid in reducing model inconsistency 
across cohorts, leading to more trustworthy decision-making for medical 
research. 

Although we have only used one binary outcome example for illus
tration, our FedScore framework is scalable and versatile, given that 
modules could be appropriately modified to accommodate different 
clinical research questions. For instance, the score derivation module 
could be modified to accommodate survival or ordinal outcomes, and 
additional privacy-preserving FL frameworks and topologies might also 
be added to offer more options. We anticipate that FedScore and its 
future extensions could together act as some foundations for creating 
more trustworthy clinical scoring systems in approaches that safeguard 
data privacy. 

Limitations 

Results were obtained from homogenous data split from a single 
source without consideration of site-specific real-world heterogeneity. 
FedScore may encounter problems with heterogeneous medical data 
because the current ODAL2 algorithm in module 3 requires that the data 
across different sites are homogeneous, similar to the majority of the FL 
and distributed methods currently in use [12,58]. Despite the fact that 
FedScore does not currently address data heterogeneity, its scalability 
allows for continuous updates with cutting-edge solutions for better 
handling of the issue. We anticipate that the overall functionality and 
applicability of FedScore in various clinical research settings will be 
significantly improved by this ongoing process of improvement. 

Future work 

Our future work will involve international collaboration to develop 

FedScore with more heterogeneous datasets. We plan to extend Fed
Score by incorporating the two state-of-art FL algorithms that account 
for the between-site heterogeneity. The first strategy is to use the dCLR 
algorithm [59], motivated from a novel pairwise conditional logistic 
regression, to estimate the common regression coefficients and then 
estimate the site-specific intercept locally for each site. The second 
strategy is to adopt the lossless, few-shot dPQL algorithm [60], which 
has been used to rank the performance of different hospitals while 
considering the case-mix situation across sites (i.e., different hospitals 
are treating different patients). 

Future research could also explore the use of site-personalized 
federated models rather than a uniform model across all sites. One 
limitation of the current FedScore version is the requirement for uniform 
cutoffs in the federated model, which may not be feasible if clinical 
practices vary significantly among sites, and clinicians prefer more 
personalized models. To address this, alternative strategies such as 
personalized federated learning [61] or domain adaptation [62] could 
be considered. Additionally, incorporating common data models like 
OMOP [63], I2B2 [64], Mini-Sentinel [65] and 4CE [66] at the data- 
preprocessing stage could enhance the integration of health data from 
heterogeneous sources and enable systematic analysis [67], which is 
often overlooked in existing FL applications in healthcare [68]. The 
scalable nature of FedScore provides a platform for the incorporation of 
such enhancements, but further research is necessary to fully assess their 
feasibility and overall impact. 

5. Conclusion 

We have proposed FedScore, a privacy-preserving scoring systems 
and used a 30-day mortality prediction task to show proof-of-concept. 
We have demonstrated its potential to build effective federated clin
ical scores that are more generalizable, with lower performance vari
ability across sites. FedScore is a first-of-its-kind framework for 
constructing scoring systems based on distributed algorithms, bridging a 
gap in current medical research. While demonstrated for binary out
comes, the application of FedScore can be extended for settings with 
other types of clinical outcomes and greater heterogeneity across sites 
with future developments in FL and clinical prediction methods, 
enabling its use in a wide range of different medical contexts. 
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